Test report No B0082 – IN – CM – 26-M59-I

Laboratory measurements of sound insulation

TEST SPECIMEN: False ceiling (3 plasterboards) with ‘Akustik 3 +Sylomer’ supports under floor.

APPLICANT: AMC, S.A.

Acoustics Laboratory Manager

Mª José de Rozas

Acoustics Laboratory Engineer

Susana Escudero

The technical-owned of the ENAC Nº4/LE456 accreditation fall to technological centre LABEIN, the same way as the technical signatures of this report.

The installations where are performed the measurements according ENAC Nº4/LE456 accreditation belong to the Acoustics Area of Laboratory for Quality Control in Buildings of the Basque Country Government.

THIS REPORT CONTAINS:

Total number of pages: 9 Pages in the ANNEX: 1

This document includes only and exclusively the tested specimens and the moment and conditions in which those measurements were made. This report is the English version of the Spanish report B0082-IN-CM-26-M59.

It is expressly forbidden any total or partial reproduction of this document, except with a written conformity from LABEIN.

The test specimen has been subjected to the test asked by the applicant, following the specified procedures in the used standards.

Test results are detailed in the inside pages. Measurements repeatability complies with ISO 140-2:1991 requirements.

This document is a PDF copy of the original report, asked by our client.
INDEX

1.- AIM ..3
2.- APPLICANT ..3
3.- PLACE OF TEST SPECIMEN CONSTRUCTION AND TEST EXECUTION3
4.- TEST STANDARDS AND PROCEDURES ...4
5.- TEST ARRANGEMENT ..4
 5.1.- Test specimen description ..4
 5.2.- Laboratory test facilities ...7
 5.4.- Equipment ...8
6.- TEST PROCEDURE AND EVALUATION ...8
7.- RESULTS ..9

ANNEX Test results.
1.- **AIM**

This report presents the results of the laboratory measurements of airborne sound insulation according to ISO 140-3 of a false ceiling with supports manufactured by AMC, S.A. under floor.

2.- **APPLICANT**

COMPANY: AMC, S.A
(Aplicaciones Mecánicas del Cauchín, S.A.)

ADDRESS: Pol. Ind., Sector A, Parcel 35.
20159 ASTESAU (Gipuzkoa)
SPAIN.

CONTACT: Iñaki Lopetegi.

3.- **PLACE OF TEST SPECIMEN CONSTRUCTION AND TEST EXECUTION**

The test specimen was mounted in the Laboratory for Quality Control in Buildings of the Basque Country Government located at:

C/ Aguirrelanda, Nº 10
01013 Vitoria – Gasteiz

The test was performed in the vertical transmission rooms of the laboratory by technological centre LABEIN (Construction and Environment Unit).

The materials used in the test specimen construction were chosen by the applicant. The false ceiling construction was made by personal taken on by the applicant and supervised by Labein, and it was finished on 26 July 2004.
4.- **TEST STANDARDS AND PROCEDURES**

- **LABEIN internal procedures.** According to ENAC accreditation No 4/LE456 (ENAC: Spanish National Accreditation Body).

5.- **TEST ARRANGEMENT**

5.1.- **Test specimen description**

The test specimen consist of a floor with false ceiling (see figure 1 and photos 1-4).

The size of the test specimen is 13,86 m² (4,2 x 3,3 m).

![Test specimen sketch](image)

Figure 1: Test specimen sketch (B0082-26-M59)

1. Concrete layer
2. Ceramic hollow block
3. Plaster
4. Rigid rock wool board (4 cm; 160 kg/m³)
5. M6 rod
6. Semi-rigid rock wool board (5 cm; 20 kg/m³)
7. Metallic profile
8. Plasterboard (15 mm; 11 kg/m²)
9. ‘Akustik 3+Sylomer 30 Type B’ ceiling support
Photo 1: ‘Akustik 3+Sylomer 30 Type B’ ceiling support

Photo 2: Mounting of the first layer of rock wool
Photo 3: Mounting of the ceiling supports and the metallic profile

Photo 4: Mounting of the third plasterboard
5.2. **Laboratory test facilities**

The test has been performed in the vertical transmission acoustic rooms of the laboratory, composed of a source and a receiving room.

The mobility of the source room allows to prepare the test specimen outside the rooms (mounted in a reinforced concrete frame) and to move it later inside the test rooms.

Acoustic rooms dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Source room</th>
<th>Receiving room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (m3)</td>
<td>53.6</td>
<td>61</td>
</tr>
</tbody>
</table>

A sketch of the rooms is included:

![Figure 2: Vertical transmission acoustic rooms](image)

Laboratory test facilities comply with the requirements of **ISO 140-1:1997**.
5.3.- **Equipment**

<table>
<thead>
<tr>
<th>Source room</th>
<th>Receiving room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphones</td>
<td>Brüel & Kjær 4192; Nº 1933119</td>
</tr>
<tr>
<td>Preamplifiers</td>
<td>Brüel & Kjær 2669; Nº 2025850</td>
</tr>
<tr>
<td>Sound sources</td>
<td>Brüel & Kjær 4296; Nº 2071427</td>
</tr>
<tr>
<td>Booms</td>
<td>Brüel & Kjær 3923; Nº 2036591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control room</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer</td>
<td>Brüel & Kjær 2144; Nº 1893979</td>
</tr>
<tr>
<td>Amplifier</td>
<td>LAB 300; Nº 970-967</td>
</tr>
<tr>
<td>Equalizer</td>
<td>Sony, SRP-E100; Nº 400238</td>
</tr>
<tr>
<td>Calibrator</td>
<td>Brüel & Kjær 4231; Nº 2061476</td>
</tr>
<tr>
<td>Atmospheric conditions meter</td>
<td>Testo 0560 4540; Nº 711.88490007GB</td>
</tr>
</tbody>
</table>

6.- **TEST PROCEDURE AND EVALUATION**

The sound reduction index (R) for the one-third-octave band 100 Hz to 5 kHz has been calculated according to **ISO 140-3** standard using the following formula:

\[R = L_1 - L_2 + 10 \times \log \frac{S}{A} \]

where,

- \(L_1 \): Average sound pressure level in the source room.
- \(L_2 \): Average sound pressure level in the receiving room.
- \(S \): Test specimen area.
- \(A \): Equivalent sound absorption area in the receiving room.

The measurement of the average sound pressure levels \(L_1 \) and \(L_2 \) has been performed emitting an equalized noise (between 100 Hz and 5 kHz) with a moving sound source.

The sound field in the source and receiving rooms has been sampled using six different microphone positions.
The equivalent sound absorption area has been evaluated from the reverberation time measured in the receiving room and determined using Sabine’s formula:

\[A = \frac{0.16 \times V}{T} \]

where,

A: Equivalent sound absorption area in the receiving room.
T: Reverberation time in the receiving room.
V: Receiving room volume.

Reverberation time in the receiving room has been determined using one position of the sound source and six different fixed microphone positions, at 60° in the microphone path.

At last, background noise was measured in the receiving room in the one-third-octave band 100 Hz to 5 kHz using six different microphone positions.

All the testing equipment was calibrated just before and after every measurement.

The weighted sound reduction index (Rw) of the test specimen and the spectrum adaptation terms C and \(C_t \) have been obtained according to ISO 717-1 standard from the insulation curve.

Additionally, the pink noise insulation index, \(R(A) \), between 100 Hz and 5 kHz has been calculated as the index specified by the Spanish Basic Building Regulation: NBE-CA 88 “Acoustical Conditions in Buildings”.

7.- RESULTS

The results of the test are attached in the ANNEX.